Бесконтактная система зажигания устройство работа

Полные ответы на все вопросы на тему: "Бесконтактная система зажигания устройство работа". Здесь собран весь тематический материал в удобном для чтения виде. Если у вас возникли вопросы - задавайте их дежурному специалисту.

Что такое бесконтактная система зажигания

Дата публикации: 18 декабря 2018 .
Категория: Автотехника.

Для того чтобы бензиновый двигатель заработал, в его цилиндрах должно произойти воспламенение топлива. Это истина. Поэтому система зажигания (сначала, естественно, контактная) и возникла одновременно с автомобилем. Но прогресс не стоит на месте. Он, конечно же, коснулся и системы зажигания: на смену традиционному способу образования искры пришел более эффективный и надежный, а именно, бесконтактный. О нем и пойдет речь в данной статье.

Основные различия традиционной и бесконтактной систем зажигания

При работе бензинового двигателя искрообразование (то есть подача высокого напряжения на свечу) происходит в момент, когда осуществляется размыкания низковольтной цепи питания катушки зажигания. В традиционной системе в качестве такого «выключателя» выступают контакты механического прерывателя, которые периодически размыкаются при соприкосновении с кулачками вращающегося ротора трамблера.

Именно этот узел и был заменен при переходе на бесконтактную систему. Управляющий сигнал в ней формируется специальным сенсором (индуктивным, оптическим или датчиком Холла), установленным под крышкой распределителя. Электрический импульс поступает на полупроводниковый коммутатор, который и осуществляет управление первичной обмоткой катушки зажигания.

На заметку! В полной мере назвать систему зажигания большинства современных автомобилей (средней ценовой категории) бесконтактной все-таки нельзя. Дело в том, что контакты, установленные в крышке распределителя, все равно участвуют в процессе искрообразования, ведь, именно, через них и бегунок высокое напряжение подается на свечи.

Преимущества и недостатки бесконтактной системы зажигания

Несмотря на то, что бесконтактная система зажигания (БСЗ) стоит дороже (это, пожалуй, ее единственный недостаток) по сравнению с традиционной, именно ее применяют сейчас во всех современных автомобилях. Лучшее искрообразование в БСЗ обусловлено тем, что за счет применения полупроводникового коммутатора уменьшаются потери энергии на первичной обмотке катушки, а это, в свою очередь, ведет к увеличению напряжения на вторичной. В результате происходит более полное сгорание топливно-воздушной смеси в цилиндрах двигателя. Отсюда и все вытекающие достоинства бесконтактной системы зажигания:

  • увеличение мощности мотора;
  • экономия топлива;
  • улучшение динамических характеристик автомобиля;
  • снижение токсичности выхлопных газов;
  • уверенный запуск двигателя в условиях повышенной влажности и больших отрицательных температур;
  • стабильная работа мотора при различных оборотах (вплоть до максимальных);
  • увеличение срока эксплуатации свечей.

КОНСУЛЬТАЦИЯ ЮРИСТА


УЗНАЙТЕ, КАК РЕШИТЬ ИМЕННО ВАШУ ПРОБЛЕМУ — ПОЗВОНИТЕ ПРЯМО СЕЙЧАС

8 800 350 84 37

Способы переоборудования контактной системы зажигания в бесконтактную

Естественно, по дорогам нашей необъятной Родины колесит огромное количество автомобилей (как импортных, так и отечественных), оборудованных стандартной системой зажигания. Повысить эффективность и надежность ее работы – мечта любого владельца транспортного средства. В настоящее время сделать это своими руками достаточно просто. Существует два основных способа (вариант полностью самодельного устройства мы не рассматриваем) модернизации системы зажигания:

  • Приобретение и установка полного комплекта бесконтактного зажигания. Хотя такой вариант тюнинга и является достаточно дорогостоящим, специалисты считают его самым «правильным» с технической точки зрения. Только полностью заменив штатную систему зажигания можно получить новую, обладающую всеми достоинствами бесконтактного искрообразования.
  • Доработка «родного» трамблера, путем установки специального модуля, представляющего собой малогабаритное устройство «3 в 1» (датчик, усилитель сигнала и коммутирующий транзистор). Этот вариант модернизации является менее затратным и позволяет несколько улучшить технические характеристики традиционной системы зажигания, исключив из схемы «проблемный» механический прерыватель.

На заметку! Производители автомобильных запчастей предлагают пользователям наборы, позволяющие произвести переделку систем зажигания для различных моделей транспортных средств, в соответствии с вышеописанными вариантами.

Бюджетный вариант перехода на бесконтактную систему

Контакты механического размыкателя «подгорают» и изнашиваются, поэтому их приходится периодически чистить и регулировать зазор. Избавить владельцев классических ВАЗов (2101-2107) от этой рутинной работы позволяет установка модуля «Сонар ИК» (стоимостью 700÷900 рублей) в трамблер.

Устройство состоит из:

  • оптического датчика (источника инфракрасного излучения и фотоприемника);
  • усилителя электрического сигнала;
  • коммутирующего транзистора.

Важно! Все вышеперечисленное смонтировано в миниатюрном влагозащищенном корпусе, что позволяет достаточно просто установить его на место штатного контактного прерывателя.

Принцип работы модуля заключается в следующем:

  • При вращении ротора трамблера его кулачки периодически перекрывают световой поток оптического датчика.
  • Электрические импульсы от фотоприемника усиливаются встроенной микросхемой и подаются на управляющий транзистор, который размыкает/замыкает цепь первичной обмотки катушки.

На заметку! Светодиодные индикаторы (красного и зеленого цвета) информируют о состоянии электронного коммутирующего ключа (замкнут/разомкнут).

Как установить и настроить «Сонар ИК» подробно рассказано в представленном ниже видео:

Бесконтактный датчик-прерыватель для иномарок

Владельцы иномарок могут приобрести простое приспособление от UltraSpark, Pertronix или AccuSpark, позволяющее быстро «превратить» стандартную систему зажигания в бесконтактную. В комплект поставки такого устройства входят:

  • Индукционный датчик-прерыватель.
  • Триггерное пластиковое кольцо с запрессованными в него неодимовыми магнитами (по количеству цилиндров двигателя).
  • Инструкция по монтажу и схема подключения.

По утверждению производителей монтаж бесконтактного датчика-прерывателя (БДП) занимает не более 30 минут:

  • Снимаем крышку трамблера и бегунок.
  • Демонтируем контактную группу механического прерывателя и искрогасящий конденсатор.
  • Устанавливаем БДП и выводим его провода через отверстие в корпусе.
  • Надеваем на ось ротора триггерное кольцо.
  • Возвращаем на место бегунок и крышку трамблера.
  • Подсоединяем провода от установленного датчика к катушке зажигания в соответствии со схемой.
Читайте так же:  Заявление о вынесении судебного приказа на алименты

Важно! Зная модель трамблера можно подобрать бесконтактный модуль-прерыватель, практически, для любой марки транспортного средства иностранного производства.

Несомненными достоинствами БДП являются:

  • Невысокая стоимость.
  • Простота установки.
  • Возможность использования со стоковыми трамблерами и высоковольтными катушками конкретной марки автомобиля.

Полноценная система бесконтактного зажигания

Естественно, получить все преимущества БСЗ, установив только датчик-прерыватель, не получится. Этот модуль лишь позволяет повысить надежность искрообразования (без пропусков) и избавляет владельцев от необходимости постоянно контролировать состояние механической контактной группы. Для того, чтобы оборудовать свой автомобиль полноценной БСЗ, необходимо приобрести комплект, состоящий из:

  • трамблера, с установленным датчиком Холла;
  • полупроводникового коммутатора;
  • высоковольтной катушки;
  • соединительных проводов с установленными колодками.

Такой набор для классических автомобилей ВАЗ от «СОАТЭ» (Россия, город Старый Оскол) на сегодняшний день стоит около 2500 рублей. В представленном ниже видео подробно описан процесс его самостоятельной установки:

Система зажигания без распределителя

Самой «продвинутой» и действительно бесконтактной является электронная система зажигания, которая не имеет механического распределителя, так как его функции выполняет бортовой компьютер. Он «определяет» момент искрообразования в соответствующем цилиндре по сигналам, поступающим с сенсоров положения распределительного и коленчатого валов. Вместо одной высоковольтной катушки в системе используют несколько (по одной на каждый цилиндр двигателя). Это позволяет создать более мощную искру, так как компьютер в зависимости от частоты вращения двигателя четко «определяет» время, необходимое для накопления энергии.

На заметку! Еще более инновационной считают систему зажигания, в которой катушки вмонтированы непосредственно в колпачки, одеваемые на свечи. Это позволяет избавиться от высоковольтных проводов, что в свою очередь снижает потери электроэнергии, а также повышает надежность и эффективность процесса искрообразования.


Источник: http://avto-moto-shtuchki.ru/avtotekhnika/340-beskontaktnaya-sistema-zazhiganiya.html

Схема контактного и контактно-транзисторного зажиганий

Исторически сложилось так, что для первых бензиновых моторов использовалась батарейная (аккумуляторная) система зажигания, основанная на эффекте самоиндукции. Самой первой была контактная, ставшей впоследствии классической, система. По мере совершенствования автомашины развивались и его отдельные компоненты, так появилась контактно транзисторная система зажигания. На примере сравнения этих двух систем можно проследить, как происходило развитие самого автомобиля.

О принципах работы классической системы зажигания

Надо сразу отметить, несмотря на простоту, изящество примененных технических решений. Схема подобной системы приведена на рисунке ниже:

Работа осуществляется следующим образом – при повороте ключа в замке через контакты прерывателя и обмотку (первичную) катушки, называемой еще бобиной, начинает протекать ток. Когда размыкаются контакты прерывателя, цепь разрывается, и в первичной обмотке бобины прекращается ток. Но благодаря эффекту самоиндукции в обмотке (вторичной) появляется напряжение. А так как число витков обеих обмоток существенно различается (во вторичной витков больше), величина вторичного напряжения может достигать десятков киловольт.
Это напряжение, через распределитель, поступает на нужную свечу, где возникает искра, которая и поджигает бензин в цилиндрах двигателя.
Все просто и красиво, и такая схема прекрасно работала на первых моторах.
Недостатки, которыми она обладает, начали проявляться, когда у бензинового двигателя стало:

  • увеличиваться число цилиндров;
  • повышаться число оборотов, развиваемых двигателем, двигатели стали высокооборотистыми;
  • возможным увеличивать степень сжатия в цилиндрах;
  • практиковаться использование обедненных смесей.

Кроме того, недостатком надо считать низкую надежность, в первую очередь обусловленную обгоранием контактов прерывателя, из-за чего порой переставала работать вся система зажигания. Естественно, никто с этим мириться не собирался, и появилась контактно транзисторная система зажигания.

Новый этап развития

Основным элементом, благодаря которому новая схема приобрела улучшенные характеристики, относительно прежней, классической, стал транзистор. Причем он явился причиной, что контактно-транзисторная система зажигания получила новый узел – коммутатор.

Отличительной особенностью, присущей транзистору, является то, что небольшой ток, поступающий на управление (в базу), позволяет управлять током гораздо большей величины, протекающим через прибор.

Контактно транзисторная система зажигания, несмотря на незначительные, на первый взгляд, изменения и сохранение принципа работы, приобрела новые свойства, недоступные классической системе. Но прежде чем оценивать достоинства и недостатки, которыми обладает контактно-транзисторная схема, необходимо коснуться отличий в работе.

Главное отличие от классического зажигания заключается в том, что прерыватель воздействует не на бобину, а на базу транзистора. В остальном контактно-транзисторная схема работает так же, как обычная система зажигания. При прерывании, в первичной обмотке бобины протекания тока, во вторичной наводится высоковольтное напряжение. Не касаясь деталей внутреннего устройства коммутатора и его подключения, можно отметить, что транзисторная схема зажигания даже в таком упрощенном виде обладает следующими достоинствами:

Контактно-транзисторное управление процессами, происходящими в катушке зажигания, обеспечивает возможность увеличить в первичной обмотке ток, вследствие чего:

  1. можно повысить величину вторичного напряжения;
  2. увеличить между электродами свечи зазор;
  3. улучшить процесс искрообразования, сделать его более устойчивым, а также улучшить запуск двигателя при пониженной температуре;
  4. повысить количество оборотов и увеличить мощность двигателя.

Однако подобная контактно-транзисторная схема требует использования катушки зажигания с отдельными обмотками (первичной и вторичной).

Повысилась надёжность: контактно-транзисторная система позволяет снизить нагрузку на контакты прерывателя, уменьшив значение проходящего через них тока, следствием чего является уменьшение подгорания контактов.
Однако не все так хорошо, как кажется с первого взгляда. Подобная контактно-транзисторная система зажигания имеет и свои недостатки. Вызваны они использованием прерывателя, т.е. система начинает работать и формировать искру, когда контактно разрывается цепь прохождения тока в обмотке бобины. Величина тока, поступающего в базу транзистора, существенно влияет на его работу, и уменьшение тока из-за качества контактов скажется на работе всей системы.

Читайте так же:  Излишне перечислены алименты

Значение контактно-транзисторной схемы в развитии автомобиля

В данном случае мы рассмотрели только два начальных этапа на пути развития системы зажигания автомобиля. В дальнейшем она претерпела гораздо более значительные изменения, но контактно-транзисторная схема была первой. Именно на ней были отработаны возможные варианты повышения ее эффективности, в частности, уход от классического, контактного зажигания, и намечены пути развития в сторону использования бесконтактных способов получения искры.
» alt=»»>
Контактно-транзисторная система зажигания оказалась первым шагом, в совершенствовании классического подхода к получению искры на бензиновом ДВС, и явилась закономерным этапом развития автомобиля в целом, и его отдельных узлов в частности.

Источник: http://znanieavto.ru/fire/kontaktno-tranzistornaya-sistema-zazhiganiya.html

Устройство автомобилей

Бесконтактная система зажигания

Дальнейшим шагом в развитии систем зажигания индуктивного типа было создание бесконтактных систем, в которых конструкторы полностью отказались от разрыва электрической цепи первичной обмотки катушки зажигания механическим способом. Функцию генерирования управляющего сигнала на базу транзистора передали магнитоэлектрическому датчику, использующему в своей работе принцип, основанный на эффекте Холла.
Отказ от механических контактов позволил существенно повысить надежность и стабильность работы системы зажигания, поэтому они быстро вытеснили контактные и контактно-транзисторные системы, применявшиеся на автомобильных двигателях.

На рисунке 1 представлена схема системы зажигания с магнитоэлектрическим генераторным датчиком, предназначенная для восьмицилиндровых двигателей. Она содержит электронный коммутатор, датчик распределитель, добавочный резистор и катушку зажигания.
Магнитоэлектрический датчик конструктивно объединён с высоковольтным распределителем.

Работает бесконтактная система зажигания (БСЗ) следующим образом (рис. 1).
При включенном выключателе 5 и неработающем двигателе транзистор VT1 (К.Т630Б) закрыт, так как его база и эмиттер имеют одинаковый потенциал.
При закрытом транзисторе VT1 потенциал базы транзистора VT2 (К.Т630Б) выше потенциала эмиттера.
По переходу база-эмиттер протекает ток управления по цепи:
положительный вывод аккумуляторной батареи — контакты выключателя зажигания — положительный вывод добавочного резистора — положительный вывод коммутатора — дроссель-диод VD6 — резисторы R5 и R6 — переход база-эмиттер транзистора VT2 — резисторы R10 и R11 — корпус автомобиля — отрицательный вывод аккумуляторной батареи.

Ток управления открывает транзистор VT2, что в свою очередь приводит к появлению тока управления транзистора VT3 (К.Т809А), открывается транзистор VT4 (КТ808А). При этом через коллектор-эмиттер транзистора VT4 пойдет ток по цепи:
положительный вывод аккумуляторной батареи — контакты выключателя зажигания — добавочный резистор — первичная обмотка катушки зажигания — диод VD7 — коллектор-эмиттер транзистора VT4 — «масса» — отрицательный вывод аккумуляторной батареи.
При этом в магнитном поле катушки зажигания накапливается электромагнитная энергия.

При прокручивании коленчатого вала двигателя стартером в магнитоэлектрическом датчике вырабатывается переменное напряжение, которое поступает на вывод «Д» коммутатора. С вывода «Д» сигнал датчика через диод VD1 (КД102А) и цепь R1C3 поступает на базу транзистора VT1.
Диод VD1 пропускает с датчика импульсы только положительной полярности.
Цепь R1C3 служит для исключения электрического угла опережения зажигания, присущего магнитоэлектрическим датчикам при изменении частоты вращения.

Поступивший на базу транзистора VT1 положительный импульс вызывает увеличение потенциала базы относительно эмиттера. В результате в транзисторе VT1 будет протекать ток управления по цепи:
обмотка датчика — диод VD1 — цепь R1C3 — переход база-эмиттер транзистора VT1 — «масса» — обмотка датчика.
Транзистор VT1 откроется и зашунтирует переход база-эмиттер транзистора VT2, что вызовет закрытие транзистора VT2, а затем и закрытие транзисторов VТЗ и VT4.

Запирание транзистора VT4 приводит к резкому прекращению первичного тока в катушке зажигания и возникновению высокого напряжения во вторичной обмотке катушки зажигания, которое через распределитель подводится к соответствующей свече зажигания.
Затем после исчезновения импульса с датчика транзистор VT1 закроется, а транзисторы VT2, VT3 и VT4 откроются, и в магнитном поле катушки зажигания будет опять накапливаться электромагнитная энергия.

Транзисторный коммутатор содержит целый ряд дополнительных элементов, служащих для защиты и улучшения условий работы схемы. Стабилитрон VD5 (КС980А) и конденсатор С7 защищают схему от напряжения, индуктируемого в первичной обмотке катушки зажигания.

Диод VD3 (КД102А) ограничивает амплитуду импульса с датчика и, таким образом, защищает переход база-эмиттер транзистора VT1 от пробоя.
Диод VD7 защищает транзистор VT4 от обратной полярности источника питания.

Конденсатор С6 и резистор R7 образуют цепь обратной связи, по которой положительная полуволна ЭДС самоиндукции с первичной обмотки катушки зажигания поступает на базу транзистора VT1, ускоряя его отпирание, что способствует обеспечению бесперебойности искрообразования на низких частотах вращения.

Видео (кликните для воспроизведения).

Конденсаторы С4 и С5 защищают переходы база-эмиттер транзисторов VT2 и VT3 от всплесков напряжения и исключают ложные срабатывания транзисторов VT2 и VT3. Резисторы R8, R10 и R11, включенные между эмиттерами и базами транзисторов VT2, VT3 и VT4, служат для повышения предельно допустимого напряжения между коллектором и эмиттером транзисторов.

Резистор R12 и конденсатор С8 уменьшают мощность, выделяемую в транзисторе VT4 при его закрытии, во время переходного процесса. Конденсаторы С1 и С2 и дроссель уменьшают пульсации напряжения в цепи питания коммутатора, а диод VD6 (КД212Б) защищает от обратной полярности.

Защита транзисторного коммутатора от перенапряжений питания осуществляется схемой, состоящей из стабилитрона VD2 (КС515А), стабилитрона VD4 (КС119А) и резисторов R2 и R3.
При повышении напряжения питания до 18 В напряжение на стабилитроне VD2 будет больше напряжения стабилизации и на базу транзистора VT1 поступит положительное смещение относительно эмиттера. Независимо от импульсов датчика транзистор VT1 откроется, а транзисторы VT2, VT3 и VT4 закроются, и двигатель остановится.

Читайте так же:  Образец уведомления об отмене совмещения должностей

Транзисторный коммутатор 13.3734 размещен в ребристом корпусе, отлитом из алюминия (см. рисунок вверху страницы).
Коммутатор имеет три вывода:

  • вывод «Д» — для соединения с низковольтным выводом датчика-распределителя;
  • вывод «КЗ» — для соединения с выводом катушки зажигания;
  • вывод «+» — для соединения с выводом «+» добавочного резистора.

Катушка зажигания Б116 выполнена с электрически разделенными обмотками, как и катушка Б114 для контактно-транзисторной системы зажигания, и отличается от последней обмоточными параметрами.
Добавочный резистор 14.3729 состоит из двух нихромовых спиралей, которые размещены в металлическом корпусе. Выводы, к которым присоединены концы спиралей, имеют маркировку «+», «С», «К». Величина сопротивления спирали между выводами «С» и «+» составляет 0,71 Ом, а спирали между выводами «С» и «К» — 0,52 Ом.

Датчик-распределитель 24.3706 (на схеме рис. 1) предназначен для управления работой транзисторного коммутатора, распределения импульсов высокого напряжения по свечам зажигания в необходимой последовательности, для автоматического регулирования момента искрообразования в зависимости от частоты вращения коленчатого вала и нагрузки двигателя.

Дальнейшее развитие системы питания бензиновых двигателей связано с широким внедрением компьютерных технологий. Последним словом техники в этом плане являются микропроцессорные системы зажигания, управляемые бортовым компьютером автомобиля. Электронный блок управления (ЭБУ), собирающий информацию от многочисленных датчиков, позволяет эффективно управлять не только системой зажигания, но и другими системами двигателя — питания, охлаждения, контроля над отработавшими газами.
Комплексное управление работой двигателя позволило максимально использовать экономические и динамические свойства двигателя при соблюдении установленных экологических норм.
Ведутся работы и над повышением эффективности системы зажигания путем внедрения многокатушечных модуляторов высокого напряжения, а также в других перспективных направлениях.

Источник: http://k-a-t.ru/mdk.01.01_elektro/34-zajiganie/index.shtml

Устройство автомобилей

Система зажигания

Назначение системы зажигания

В двигателях с принудительным воспламенением рабочей смеси, к которым относятся бензиновые и газовые двигатели, применяется система зажигания, т. е. система, обеспечивающая поджог топливовоздушной смеси перед началом рабочего хода поршня в конце такта сжатия.

Система зажигания двигателя предназначена для генерации импульсов высокого напряжения, вызывающих вспышку рабочей смеси в камере сгорания, синхронизацию этих импульсов с фазой двигателя и распределение импульсов по цилиндрам двигателя.

Воспламенение горючей смеси в камере сгорания автомобильного бензинового или газового двигателя осуществляется посредством электрического разряда, возникающего между электродами свечи зажигания, ввернутой в головку блока цилиндров. Бесперебойное искрообразование между электродами свечи зажигания происходит при высоком напряжении (8…30 тыс. вольт). На прогретом двигателе к моменту искрообразования рабочая смесь сжата и имеет высокую температуру, близкую к температуре воспламенения, поэтому для ее воспламенения требуется искровой разряд небольшой мощности.
Однако имеется ряд режимов работы двигателя, когда требуется очень мощная искра. К таким режимам относятся:

  • пусковой режим;
  • работа на бедных смесях при частичном открытии дроссельной заслонки;
  • работа на холостом ходу;
  • работа при резких открытиях дросселя.

Электрическая искра вызывает появление в ограниченном объеме рабочей смеси первых активных центров, от которых начинается развитие бурно протекающей химической реакции окисления топлива (т. е. его горения), сопровождающейся выделением тепла.
От мощности искры и момента зажигания рабочей смеси в значительной мере зависят экономичность и устойчивость работы двигателя, а также токсичность отработавших газов.

Требования, предъявляемые к системе зажигания

Учитывая условия, в которых работают двигатели внутреннего сгорания, к системам зажигания предъявляются следующие требования:

  • система зажигания должна создавать напряжение, достаточное для пробоя искрового промежутка (зазора) свечи зажигания, обеспечивая при этом бесперебойное искрообразование на всех режимах работы двигателя;
  • искра, образующаяся между электродами свечи зажигания, должна обладать достаточной энергией и продолжительностью действия для воспламенения рабочей смеси при всех возможных режимах работы двигателя;
  • момент зажигания должен быть строго определенным и соответствовать условиям работы двигателя;
  • работа всех элементов системы зажигания должна быть надежной при высоких температурных и механических нагрузках, которые испытывает двигатель;
  • электроды свечи зажигания в процессе работы не должны подвергаться значительной эрозии.

Напряжение, необходимое для пробоя искрового промежутка свечи зажигания, зависит от многих факторов, таких как давление, температура и состав рабочей смеси; расстояние между электродами свечи зажигания (зазор); материал и температура электродов; полярность высокого напряжения.
Так, при пуске холодного двигателя пробивное напряжение достигает 16…30 тыс. вольт и более, а при работе прогретого двигателя достаточно 10…12 тыс. вольт.

Воспламенение смеси должно осуществляться в точно определенный момент относительно достижения поршнем верхней мертвой точки (ВМТ). Это обусловлено тем, что смесь сгорает не мгновенно, а в течение некоторого, пусть даже короткого, промежутка времени.
Если воспламенение происходит позднее, чем нужно, то смесь сгорает в процессе такта расширения (рабочего хода), и догорает в выпускном трубопроводе. В результате уменьшается среднее давление газов в процессе рабочего хода поршня, и, соответственно, снижается мощность двигателя. Кроме того, происходит перегрев деталей системы выпуска отработавших газов и увеличивается количество вредных веществ, выбрасываемых в окружающую среду.

Читайте так же:  Разрешение на работу квоты

При слишком раннем воспламенении рабочая смесь вспыхивает до прихода поршня в ВМТ, из-за чего поршень испытывает сильные встречные удары от детонирующего топлива, сопровождающиеся звонким металлическим стуком в двигателе. Раннее воспламенение уменьшает мощность и КПД двигателя и приводит к быстрому износу деталей кривошипно-шатунного механизма (КШМ), особенно поршневой группы.

Угол между положением коленчатого вала, соответствующим моменту искрового разряда между электродами свечи зажигания, и положением, при котором поршень находится в ВМТ, называется углом опережения зажигания. Оптимальный угол опережения зажигания зависит от частоты вращения коленчатого вала и от нагрузки двигателя.

Если коленчатый вал вращается с большой частотой, скорость движения поршня увеличивается, и время, отводимое для сгорания рабочей смеси, сокращается. В этом случае для того, чтобы рабочая смесь успела полностью сгореть, необходимо поджечь ее немного раньше, до прихода поршня в ВМТ, т. е. увеличить угол опережения зажигания.

Повышение нагрузки на двигатель сопровождается увеличением угла открытия дроссельной заслонки и наполняемости цилиндров, а также снижением частоты вращения коленчатого вала двигателя. В результате продолжительность такта расширения и процесса сгорания смеси увеличивается, поэтому смесь нужно поджечь немного позже, т. е. уменьшить угол опережения зажигания.

По этим причинам современные системы зажигания оснащены устройствами, автоматически изменяющими угол опережения зажигания в зависимости от режима работы двигателя.

Распределительная функция системы зажигания связана с тем, что автомобильные двигатели в подавляющем большинстве выполняются многоцилиндровыми, при этом процессы, происходящие в разных цилиндрах сдвинуты по времени из соображений уравновешенности и сбалансированности узлов и деталей подвижной группы КШМ. Следовательно, система зажигания должна обеспечить подачу искрового разряда в каждый цилиндр строго в соответствии с протекающим в нем тактом, положением поршня и клапанов газораспределительного механизма (ГРМ).
Устройства, обеспечивающие своевременную подачу искры в каждый цилиндр двигателя, называют распределителями зажигания. Конструкция распределителя зависит от типа системы зажигания, применяемой в двигателе, но принцип действия и выполняемые функции у таких устройств одинаковы.

Особенности работы двигателя и определяют основные требования к системе зажигания. При этом важным для системы зажигания является стабильность регулировочных характеристик, поскольку даже самое небольшое их изменение в процессе работы негативно отражается на мощности двигателя и его экономичности, а также в количестве вредных веществ, выбрасываемых в окружающую среду.

Требования, предъявляемые к приборам системы зажигания

Приборы системы зажигания должны отвечать следующим требованиям:

  • иметь простую конструкцию при эффективной работе;
  • обладать малой массой и габаритными размерами;
  • быть надежными и долговечными при минимальных эксплуатационных затратах;
  • обеспечивать бесперебойное воспламенение рабочей смеси на всех режимах работы двигателя;
  • обеспечивать автоматическое изменение угла опережения зажигания в зависимости от нагрузки и частоты вращения коленчатого вала;
  • не создавать помех для работы радиоэлектронной аппаратуры и компьютерной техники, применяемой на автомобиле.

Классификация систем зажигания

В настоящее время отечественные и зарубежные производители автомобильных двигателей серийно выпускают следующие типы систем зажигания:

  • батарейная с механическим прерывателем (классическая контактная);
  • контактно-транзисторная;
  • контактно-тиристорная;
  • бесконтактно-транзисторная;
  • цифровая с механическим распределителем;
  • цифровая со статическим распределителем;
  • микропроцессорная система управления автомобильным двигателем (МСУАД).

Батарейная (контактная) система зажигания использовалась на первых двигателях внутреннего сгорания с воспламенением рабочей смеси от электрической искры. Высокое напряжение в такой системе создается посредством явлений самоиндукции, имеющих место в трансформаторе (катушке зажигания) при протекании переменного тока через одну из его обмоток. При этом переменный ток возникает при разрыве электрической цепи от аккумуляторной батареи. Прерывание тока в контактной системе зажигания осуществляется механическим прерывателем, что и является слабым звеном этой системы.
Термин «батарейная система зажигания» возник при появлении первых автомобильных двигателей с электроискровой системой зажигания. На таких автомобилях еще не использовались генераторные установки, и единственным источником электроэнергии являлись аккумуляторные батареи. В настоящее время чаще употребляется термин «контактная система зажигания».

Контактно-транзисторная система зажигания пришла на смену классической контактной системе с появлением достаточно мощных и портативных полупроводниковых приборов. Однако, полностью отказаться от механического способа разрыва электрических цепей в такой системе конструкторы не решились — механический прерыватель периодически отсоединял базу транзистора от питающей цепи аккумуляторной батареи, запирая или отпирая, таким образом, цепь эмиттер-коллектор транзистора, через которую проходил ток в первичную обмотку катушки зажигания.
Преимущество контактно-транзисторной системы зажигания заключалось в том, что через контакты прерывателя проходил ток меньшей величины, чем в прерывателе классической системы, что благотворно сказывалось, в первую очередь, на сроке службы контактов прерывателя, но не решало многих проблем батарейной системы зажигания с механическими элементами.

Следующим этапом развития системы зажигания явилось применение бесконтактных транзисторных систем . Контакты прерывателя, замыкаемые и смыкаемые механическим путем, уступили место магнитоэлектрическому датчику-ротору. Датчик вращался в магнитном поле неподвижного статора специальной конструкции и генерировал импульсы, позволяющие управлять транзистором первичной (низковольтной) цепи системы зажигания.
Бесконтактно-транзисторная система зажигания имеет существенное преимущество перед контактной и контактно-транзисторной системами — в ее работе не использовался такой нежный и ненадежный элемент, как электрические контакты, управляемые механическим путем.

Несколько иной способ получения высокого напряжения для образования искрового разряда на свечах зажигания применяется в тиристорных (конденсаторных) системах зажигания . В отличие от рассмотренных выше систем зажигания, использующих для накопления высоковольтной энергии индуктивность (катушку зажигания), в тиристорных системах накопление энергии осуществляется в емкостном накопителе, т. е. конденсаторе. Для работы такой системы необходимы дополнительные устройства, в частности, преобразователь напряжения и управляющий элемент — тиристор.
Преимущество тиристорных систем зажигания заключается в том, что для накопления электроэнергии в конденсаторе требовалось значительно меньше времени, чем в системах с индуктивными накопителями.
Кроме того, работа тиристорной системы зажигания практически не зависела от частоты вращения коленчатого вала двигателя. Эти факторы были решающими при выборе типа системы зажигания для автомобилей с высокооборотистыми двигателями, в том числе — для гоночных автомобилей и мотоциклов. Тем не менее, недостатки этой системы, в. т. ч. очень короткая продолжительность искрового разряда, не позволили ей вытеснить классические системы зажигания с индуктивными накопителями энергии.

Читайте так же:  Арест зарплатной карты без приставов

Прогрессирующее развитие компьютерной техники привело к появлению совершенной новых типов систем зажигания, использующих для своей работы всевозможные датчики, управляющей программой бортового компьютера автомобиля. Сначала появились системы зажигания с цифровым управлением , а затем и микропроцессорные системы управления автомобильным двигателем .

Электроника, управляемая датчиками, оказалась несравненно надежнее и функциональнее, чем механика и электромеханика. Так, например, датчик положения коленчатого вала (ДПКВ) совместно с некоторыми другими корректирующими датчиками (датчик фаз, датчик положения дроссельной заслонки, датчик скорости) полностью заменил такой ненадежный элемент системы зажигания, как прерыватель. Имея простую конструкцию и миниатюрные габариты, датчики, тем не менее, великолепно справлялись с возложенными на них функциями.
Кроме того, наиболее ценным последствием внедрения компьютера в автомобиль явилась возможность централизованного управления системами двигателя и согласовать работу систем зажигания, питания и охлаждения.

В последние годы устаревшие типы системы зажигания, использующие в работе механические, транзисторные и тиристорные прерыватели, интенсивно уступают место более современным системам, управляемым посредством электроники и компьютерной техники.
В двигателях современных бензиновых и газовых автомобилей все шире применяются цифровые и микропроцессорные системы, комплексно управляющие системами зажигания и питания двигателя, а также осуществляющими контроль над выбросами продуктов сгорания топлива в окружающую среду, что позволило получить ряд существенных преимуществ с точки зрения динамики, экономичности и экологичности двигателей.
Тем не менее, для того, чтобы ясно понимать работу самых совершенных систем зажигания, необходимо знать принцип работы старой и доброй контактной (батарейной) системы зажигания, позволившей впервые воспламенить рабочую смесь в цилиндре двигателя с помощью электрической искры.

Источник: http://k-a-t.ru/mdk.01.01_elektro/30-zajiganie/

Система электрооборудования автомобиля

Устройство бесконтактной системы зажигания

Бесконтактная система зажигания появилась благодаря развитию контактно-транзисторной системы. Отличие бесконтактной системы зажигания состоит замене контактного прерывателя на бесконтактный датчик.

Преимущества бесконтактной системы зажигания

Использование бесконтактной системы зажигания на автомобиле позволило повысить мощность, добиться более качественного сгорания горючей смеси, что не только позволило снизить расход, но и уменьшить выброс вредных веществ в атмосферу.

Устройство бесконтактной системы зажигания

1 — Свечи зажигания; 2 — датчик-распределитель; 3 – распределитель; 4 — датчик импульсов; 5 – коммутатор; 6 – катушка зажигания; 7 — монтажный блок; 8 — реле зажигания; 9 — выключатель зажигания; А — к клемме генератора.

Бесконтактная система состоит из следующих элементов:

  • источник питания;
  • выключатель зажигания ;
  • датчик импульсов;
  • транзисторный коммутатор;
  • катушка зажигания;
  • распределитель ;
  • свечи зажигания.

Общее устройство бесконтактной системы зажигания напоминает строение контактной системы зажигания. Распределитель соединяется со свечами и катушкой зажигания при помощи высоковольтных проводов. Также в бесконтактной системе имеется датчик импульсов и транзисторный коммутатор.

Датчик импульсов служит для создания электро- импульсов низкого напряжения. Различают несколько датчиков импульсов: датчик Холла, индуктивный датчик и оптический.

В бесконтактной системе зажигания свое применение нашел датчик Холла (где под воздействием магнитного поля возникает поперечное напряжение в пластине проводника). Датчик Холла имеет не сложную конструкцию и состоит из постоянного магнита, полупроводниковой пластины, микросхемы и обтюратора (стального экрана).

В стальном экране имеется отверстие, через которое датчик пропускает магнитное поле, вследствие чего в полупроводниковой пластине возникает напряжение. Стальной экран, в свою очередь, не пропускает магнитное поле, и напряжение на полупроводниковой пластине не возникает. Такое своеобразное чередование прорезей в стальном экране содействует созданию импульсов низкого напряжения.

Датчик распределитель — это устройство, в котором объединены датчик импульсов с распределителем. Датчик-распределитель напоминает прерыватель-распределитель, и также как он приводится в действие от коленчатого вала.

Транзисторный коммутатор предназначен для прерывания тока в первичной обмотке катушки зажигания в моменты сигналов датчика импульсов. Прерывание тока происходит за счет срабатывания выходного транзистора.

Как работает бесконтактная система зажигания

Датчик-распределитель приводится в действие от вращения коленчатого вала, формируя импульсы низкого напряжения, которые передает на транзисторный коммутатор. Коммутатор, в свою очередь создает импульсы тока в первичной обмотке катушки зажигания. Когда ток прерывается, индуцируется ток высокого напряжения во вторичной обмотке катушки зажигания, после чего ток высокого напряжения подается на центральный контакт распределителя. В зависимости от порядка работы цилиндров двигателя ток высокого напряжения распределяется по проводам высокого напряжения на свечи зажигания. Свечи зажигания осуществляют воспламенение горючей смеси.

Когда число оборотов коленчатого вала растет, за регулировку угла опережения зажигания отвечает центробежный регулятор опережения зажигания. При изменении режимов работы двигателя регулирование угла опережения зажигания производится вакуумным регулятором опережения зажигания.

Видео (кликните для воспроизведения).

Источник: http://www.autoezda.com/elect/1296-beskontakt.html

Бесконтактная система зажигания устройство работа
Оценка 5 проголосовавших: 1

ОСТАВЬТЕ ОТВЕТ

Please enter your comment!
Please enter your name here